Investigation of Classification Accuracy using Fast Hartley Transform for Feature Extraction
نویسنده
چکیده
In the first step, the EEG signal from each electrode is converted to the frequency domain using the Fast Hartley Transform. Artifacts in the transformed signal using the frequency domain were removed using a band pass Chebyshev filter such that only frequencies in the range of 5-15 Hz is retained. The minimum energy, maximum energy and the average energy is computed. The computed features are trained and classified using AD Tree, BayesNet and Instance based learners.
منابع مشابه
Classification of ECG signals using Hermite functions and MLP neural networks
Classification of heart arrhythmia is an important step in developing devices for monitoring the health of individuals. This paper proposes a three module system for classification of electrocardiogram (ECG) beats. These modules are: denoising module, feature extraction module and a classification module. In the first module the stationary wavelet transform (SWF) is used for noise reduction of ...
متن کاملSupervised Feature Extraction of Face Images for Improvement of Recognition Accuracy
Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...
متن کاملTexture Feature Extraction For Biometric Authentication using Partitioned Complex Planes in Transform Domain
Feature vector generation is an important step in biometric authentication. Biometric traits such as fingerprint, finger-knuckle prints, palmprint, and iris are rich in texture. This texture is unique and the feature vector extraction algorithm should correctly represent the texture pattern. In this paper a texture feature extraction methodology is proposed for these biometric traits. This meth...
متن کاملA New Approach for Text Documents Classification with Invasive Weed Optimization and Naive Bayes Classifier
With the fast increase of the documents, using Text Document Classification (TDC) methods has become a crucial matter. This paper presented a hybrid model of Invasive Weed Optimization (IWO) and Naive Bayes (NB) classifier (IWO-NB) for Feature Selection (FS) in order to reduce the big size of features space in TDC. TDC includes different actions such as text processing, feature extraction, form...
متن کاملComparison Between Different Methods of Feature Extraction in BCI Systems Based on SSVEP
There are different feature extraction methods in brain-computer interfaces (BCI) based on Steady-State Visually Evoked Potentials (SSVEP) systems. This paper presents a comparison of five methods for stimulation frequency detection in SSVEP-based BCI systems. The techniques are based on Power Spectrum Density Analysis (PSDA), Fast Fourier Transform (FFT), Hilbert- Huang Transform (H...
متن کامل